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Abstract

Theµ-basis of a rational ruled surfaceP(s, t) = P0(s)+tP1(s) is defined in Chenet al. (Comput.
Aided Geom. Design 18 (2001) 61) to consist of two polynomialsp(x, y, z, s) andq(x, y, z, s) that
are linear inx, y, z. It is shown there that the resultant ofp andq with respect tos gives theimplicit
equation of the rational ruled surface; however, the parametric equationP(s, t) of the rational ruled
surface cannot be recovered fromp and q. Furthermore, theµ-basis thusdefined for a rational
ruled surfacedoes not possess many nice properties that hold for theµ-basis of a rational planar
curve (Comput. Aided Geom. Design 18 (1998) 803). In this paper, we introduce another polynomial
r (x, y, z, s, t) that is linear inx, y, z and t such thatp, q, r can be used to recover the parametric
equationP(s, t) of the rational ruled surface; hence, we redefine theµ-basis to consist of the three
polynomialsp, q, r . We present anefficient algorithm for computing the newly-definedµ-basis, and
derive some of its properties. In particular, we show that the newµ-basis serves as a basis for both
the moving plane module and the moving plane ideal corresponding to the rational ruled surface.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A rational ruled surface of degreen in homogeneous form is defined as

P(s, t) = P0(s) + tP1(s) := (a(s, t), b(s, t), c(s, t), d(s, t)) (1)

where

Pi (s) = (ai (s), bi (s), ci (s), di (s)), i = 0, 1 (2)
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and the maximum degree ofai (s), bi (s), ci (s), di (s), i = 0, 1, is n. To avoid the
degenerate case whereP(s, t) parameterizes a line, we assume thatP0(s) andP1(s) are
R[s]-linearly independent. Furthermore, we assume that the rational ruled surface (1) is
properly parameterized byP(s, t).

In a previous paper (Chenet al., 2001), we studied theµ-basis of a rational ruled
surface, and based on theµ-basis, derived a closed-formrepresentation of the implicit
equation of a rational ruled surface. Theµ-basis is defined to be two polynomialsp =
p(x, y, z, s) andq = q(x, y, z, s) that are linear inx, y, z and of degreeµ(µ ≤ [m/2])
and m − µ in s respectively, wherem is the degree of the implicit equation. The
implicit equation of the surface is then obtained merely by taking the resultant ofp
and q with respect tos. The idea of aµ-basis was originated in a series of papers by
Sederberg and his collaborators where a novel technique calledmoving curves and moving
surfaceswas proposed to implicitize rational curves and surfaces (Sederberg et al., 1994;
Sederberg and Chen, 1995; Sederberg andSaito, 1995). Cox et al.(1998b) applied tools
from commutative algebra such as modules to studymoving linesand define theµ-basis
of a planar rational curve. Theµ-basis of a planar rational curve can be used not only
to generate a closed-form representation of the implicit equation, but also to recover the
parametric equation of the rational curve. Thus, theµ-basis serves as a compact and useful
representation of a planar rational curve—connecting its implicit equation and parametric
equation, and facilitating the study of many properties of the curve.

Theµ-basis of a rational curve is subsequently generalized to rational ruled surfaces in
Chenet al. (2001). However, unlike the case of a planar rational curve, the parametric
equationP(s, t) of a rational ruled surface cannot be recovered from theµ-basisthus
defined, sincep andq do not involve the variablet . Furthermore, theµ-basis of a rational
ruled surface does not possess many nice properties that hold for theµ-basis ofa planar
rational curve. To make theµ-basis of a rational ruled surface complete, in this paper we
introduce another polynomialr (x, y, z, s, t) that is linear inx, y, z andt so thatp, q, r can
be used to recover the parametric equationP(s, t) of the rational ruled surface; hence, we
redefine theµ-basis to consist of the three polynomialsp, q, r .

The remainder of the paper is organized as follows. InSection 2, we provide some
preliminaries and recall some basic results fromChenet al. (2001). In Section 3, we
redefine theµ-basis of a rational ruled surface, prove its existence, and present an efficient
algorithm for computing this newly-definedµ-basis. InSection 4, we give some properties
of theµ-basis; in particular, we show that theµ-basis is a basis for both the moving plane
module and the moving plane ideal correspondingto the rational ruled surface. Finally, we
conclude the paper inSection 5.

2. Preliminaries

Let R denote the polynomial ringR[s] or R[s, t] over the fieldof real numbers. LetRm

denote the set ofm-dimensional row vectors with entriesR. Similarly, let Rm×n denote the
set ofm × n matrices with entries inR.
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For anyf(s) = ( f1(s), f2(s), f3(s), f4(s)) ∈ R[s]4, thedegreeof f(s) is the maximum
degree offi (s), i = 1, 2, 3, 4, i.e., deg(f) = max1≤i≤4 deg( fi (s)). Write

f(s) =
n∑

i=0

( fi1, fi2, fi3, fi4)s
i

wheren = deg(f). The leading coefficient vectorof f(s) is defined to beLCV(f) =
( fn1, fn2, fn3, fn4). For example, for f(s) = (2s − 1, s2 + 3s + 1, 2s2 − 1, s + 2), we
have deg(f) = 2 andLCV(f) = (0, 1, 2, 0).

A set M ⊂ Rm is called asubmoduleof Rm if h1f1 + h2f2 ∈ M for any f1, f2 ∈ M
andh1, h2 ∈ R. A submoduleM ⊂ Rm is finitely generatedif there exists a finite set of
elementsfi ∈ M, i = 1, . . . , k, such that anym ∈ M can be expressed by

m = h1f1 + · · · + hkfk, (3)

wherehi ∈ R, i = 1, . . . , k; and inthis case the set of thefi is called agenerating setof M.
If the above express (3) is unique for anym ∈ M, thenf1, . . . , fk are called abasisof the
moduleM. A module having a basis is called afree module. For any( f1, . . . , fk) ∈ Rk,
the set

syz( f1, . . . , fk) := {(h1, . . . , hk) ∈ Rk | h1 f1 + · · · + hk fk ≡ 0} (4)

is a module overR, called asyzygymodule (Cox et al., 1998a). Syzygy modules play an
important role in studying moving lines and moving planes.

A movingplane, denoted byL(s, t) := (A(s, t), B(s, t), C(s, t), D(s, t)), is a family
of planesA(s, t)x + B(s, t)y + C(s, t)z + D(s, t) = 0 with parameters(s, t). A moving
plane is said tofollow the rational ruled surfaceP(s, t) (1) if

L(s, t) · P(s, t) = A(s, t)a(s, t) + B(s, t)b(s, t) + C(s, t)c(s, t)

+ D(s, t)d(s, t) ≡ 0. (5)

Similarly, amoving surfaceof degreem in x, y, z and orderl in s, t is a family of surfaces

F(x, y, z, s, t) :=
∑

0≤i+ j ≤l

fi j (x, y, z)si t j , (6)

where fi j (x, y, z) ∈ R[x, y, z] are polynomials of degreem. The moving surface
F(x, y, z, s, t) is said tofollow P(s, t) if

dmF(a/d, b/d, c/d, s, t) ≡ 0. (7)

Let Ls,t be the set of all moving planes that follow the rational ruled surfaceP(s, t).
ThenLs,t is a syzygy module overR[s, t].

Let Ls denote the set of all moving planes that involve only the parameters; such a
moving plane is denoted byL(s) := (A(s), B(s), C(s), D(s)) with L(s) · P(s, t) ≡ 0.
ThenLs is a free module overR[s], as shown inChenet al. (2001). Some of the main
results in Chenet al.(2001) are stated in the following propositions.

Proposition 1. Let g(s) = GC D([a, b], [a, c], [a, d], [b, c], [b, d], [c, d]) and λ be the
maximum degree of[a, b], [a, c], [a, d], [b, c], [b, d], [c, d], where[a, b] = a0(s)b1(s) −
a1(s)b0(s) and[a, c],[a, d], [b, c], [b, d] and[c, d] are defined similarly. Then the implicit
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degree of the rational ruled surfaceP(s, t) is m = λ − deg(g). Furthermore,P(s, t) does
not have s-finite base points if and only if g(s) = 1. (A base point(s0, t0) of P(s, t) is
called s-finite if s0 is finite.)

Proposition 2. Let g(s) be as defined inProposition1. Then the moduleLs is generated
by the rows of the following matrix:

M := 1

g(s)




0 [c, d] [d, b] [b, c]
[d, c] 0 [a, d] [c, a]
[b, d] [d, a] 0 [a, b]
[c, b] [a, c] [b, a] 0


 (8)

andrank(M) = 2 for any parameter value s.

Proposition 3. There exist two elementsp = (p1(s), p2(s), p3(s), p4(s)) ∈ Ls and
q = (q1(s), q2(s), q3(s), q4(s)) ∈ Ls of degreeµ(µ ≤ [m/2]) and m− µ, respectively,
such that p and q form a basis ofLs. Here m is the implicit degree of the rational
ruled surface(1). Furthermore,p(s) andq(s) are linearly independent for any parameter
value s. In particular, LCV(p) and LCV(q) are linearly independent.

Proposition 4. Let p andq be as defined inProposition3. Denote p(x, y, z, s) = p · X
and q(x, y, z, s) = q · X, whereX = (x, y, z, 1). Then the implicit equation ofP(s, t) is
given by the resultant of p and q with respect to s.

The polynomialsp andq, or equivalently, the vector polynomialsp andq, are defined
in Chenet al. (2001) to be aµ-basis of the rational ruled surfaceP(s, t). An efficient
algorithm is presented inChenet al. (2001) for computing p andq. Note that p andq
cannot be used to recover the parametric equation ofP(s, t) of the rational ruled surface,
sincep andq do not involve the parametert .

3. Redefine the µ-basis of a rational ruled surface

In this section we introduce a polynomialr (x, y, z, s, t) that is linear inx, y, zandt , and
redefine theµ-basis of the rational ruled surfaceP(s, t) to consist of the three polynomials
p, q and r . We first prove the existence of such a polynomialr and then present an
algorithm for computing the newly definedµ-basisp, q andr .

We intend to find a vector valued polynomial

r(s, t) := u(s) + tv(s) := (r1(s, t), r2(s, t), r3(s, t), r4(s, t)) ∈ Ls,t (9)

where

u(s) = (u1(s), u2(s), u3(s), u4(s)) ∈ R[s]4,
v(s) = (v1(s), v2(s), v3(s), v4(s)) ∈ R[s]4

and

r i (s, t) = ui (s) + vi (s)t, i = 1, 2, 3, 4
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such that the parametric equationP(s, t) can be recovered fromp, q andr; that is,

[p, q, r] = κP(s, t) (10)

for some nonzero constantκ . Here[p, q, r] is theouter productof p, q andr, which is
defined by

[p, q, r] =


∣∣∣∣∣∣

p2 p3 p4

q2 q3 q4

r2 r3 r4

∣∣∣∣∣∣ ,−
∣∣∣∣∣∣

p1 p3 p4

q1 q3 q4

r1 r3 r4

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

p1 p2 p4

q1 q2 q4

r1 r2 r4

∣∣∣∣∣∣ ,

−
∣∣∣∣∣∣

p1 p2 p3

q1 q2 q3

r1 r2 r3

∣∣∣∣∣∣

 . (11)

In the following, we show that such a polynomialr always exists, and we devise an efficient
algorithm for computing the polynomialr with the lowest degree ins. We redefine the
µ-basis of the rational ruled surface (1) to be the three polynomialsp = p · X, q = q · X,
r = r · X, whereX = (x, y, z, 1), or directly to be the three vector valued polynomials
p, q andr. Some properties of the newly definedµ-basis will be presented in the next
section.

Theorem 1. There exists a vector valued polynomialr(s, t) ∈ Ls,t as defined in(9) such
that (10) holds.

Proof. Takeui andvi , i = 1, 2, 3, 4, as unknowns and rewrite (10) in matrix form

M̄(u(s)T, v(s)T) = κ(P0(s)
T, P1(s)

T) (12)

where

M̄ =




0 [3, 4] [4, 2] [2, 3]
[4, 3] 0 [1, 4] [3, 1]
[2, 4] [4, 1] 0 [1, 2]
[3, 2] [1, 3] [2, 1] 0


 (13)

and[i , j ] = pi qj − pj qi .
We aregoing to prove that the system of equations (12) has a solution r(s, t). To this

end, consider a rational ruled surface defined by

P̄(s, t) = p(s) + tq(s). (14)

By Proposition 3, p(s) andq(s) are linearly independent for any parameters. Therefore,
P̄(s, t) does not have anys-finite base point; for otherwise, there exist somet0 ands0 such
that p(s0) + t0q(s0) = 0, which implies thatp(s0) andq(s0) are linearly dependent. It
follows, by Proposition 1, thatGC D([1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]) = 1. Since
p · Pi (s) = 0 andq · Pi (s) = 0, i = 0, 1, P0(s) andP1(s) are moving planes that follow
P̄(s, t). By Proposition 2, P0(s) andP1(s) can be generated by the rows of the matrixM̄.
Hence, there exists a polynomialr(s, t) satisfying (10).
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Furthermore, since

P(s, t) · r(s, t) =

∣∣∣∣∣∣∣∣
r1 r2 r3 r4

p1 p2 p3 p4

q1 q2 q3 q4

r1 r2 r3 r4

∣∣∣∣∣∣∣∣
≡ 0

r := r(s, t) · X = 0 is a moving plane that followsP(s, t); that is,r(s, t) ∈ Ls,t . �

Below we presentan algorithm for computing the newly definedµ-basisp, q, r , based
on the proof ofTheorem 1and the algorithm developed inChenet al.(2001) for computing
the two elementsp, q. Before that, we first need to modify the algorithm inChenet al.
(2001) so as to use it to compute, besidesp andq, the matrix for transforming the rows of
the matrixM to p andq, i.e., a matrixT ∈ R[s]2×4 suchthat

TM =
(

p
q

)
. (15)

We begin with some notation, followingChenet al. (2001). Let Ei = (0, . . . , 0, 1,

0, . . . , 0) ∈ R[s]m be the standard basis vectors,i = 1, 2, . . . , m, where 1 is in thei th
position in the vector. Anyf(s) ∈ R[s]m can be written as

f(s) =
n∑

i=0

m∑
j =1

fi j si E j

wheren = deg(f) and therefore at least one of the coefficientsfnj , j = 1, 2, . . . , m, is
nonzero. Letj be the smallest index such thatfnj is nonzero. Then we say thatf contains
thebasis vectorE j ; and fnj , snE j and fnj snE j are called theleading coefficient, leading
monomialandleading termof f (denoted byLC(f), LM(f) andLT(f)), respectively. For
example, forf(s) = (2s− 2, 3s2 + 1, s2 − 3s+ 2, 2s2 + s) ∈ R[s]4, thebasis vector isE2,
LC(f) = 3, LM(f) = s2E2 andLT(f) = 3s2E2.

Now we outline the algorithm for computingp, q and the transformation matrixT
betweenp, q and M as defined in (8). For convenience of description, we assume that
the coefficients are integers.

Algorithm: PMU-BASIS

Input: A parametric equationP(s, t) of the rational ruled surface (1).

Output: Two elementsp, q ∈ R[s]4 of theµ-basis, and the transformation matrixT
between the generating matrixM andp, q.

Step 1. Set

v1 = (0, [c, d], [d, b], [b, c])/g, v2 = ([d, c], 0, [a, d], [c, a])/g,

v3 = ([b, d], [d, a], 0, [a, b])/g, v4 = ([c, b], [a, c], [b, a], 0)/g,

andS= {v1, v2, v3, v4}. Furthermore, setT = I ∈ R[s]4×4, whereI is the identity matrix.

Step 2. Choosevi andv j from S suchthat LT(vi ) and LT(v j ) contain the same basis
vector. Assume deg(vi ) ≥ deg(v j ).
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Step 3. Replacevi by

vi := LC M(LC(vi ), LC(v j ))

LC(vi )
vi − LC M(LC(vi ), LC(v j ))

LC(v j )
sdeg(vi )−deg(v j )v j

whereLC M(k, l ) is the least common multiple ofk andl . UpdateT by replacing thei th
row Ti of T by

Ti := LC M(LC(vi ), LC(v j ))

LC(vi )
Ti − LC M(LC(vi ), LC(v j ))

LC(v j )
sdeg(vi )−deg(v j )T j .

Step 4. If vi = 0, removevi from S, anddelete thei th row ofT.

Step 5. If the leading term of each element inShas a different basis vector, then stop; else
go toStep 2.

The correctness of the above algorithm can be shown along the same line as in
Chenet al.(2001).

Next we describe the main algorithm for computing the new elementr of theµ-basis.
Note thatStep 3of this algorithm is based on the observation thatP0(s) andP1(s) are two
moving planes following the rational ruled surfaceP̄(s, t) = p(s) + tq(s).

Algorithm: MU-BASIS

Input: A parametric equationP(s, t) of the rational ruled surface (1).

Output: Threeelementsp, q, r of theµ-basis ofP(s, t).

Step 1. Computep andq using the algorithm developed inChenet al.(2001).

Step 2. Compute theµ-basisp̄ andq̄ of the rational ruled surfacēP(s, t) defined in (14)
and the transformation matrixT between̄p, q̄ andM̄T defined in (13), using the algorithm
PMU-BASIS. Let M̄i , i = 1, 2, 3, 4, be the rows ofM̄T and letT = (ti j )2×4. Then

p̄ =
4∑

i=1

t1i M̄i , q̄ =
4∑

i=1

t2i M̄i . (16)

Step 3. ExpressP0(s) and P1(s) as R[s]-linear combinations of p̄, q̄; that is, find
polynomialshi j (s), i , j = 0, 1, and a nonzero constantκ , such that

κP0(s) = h00(s)p̄ + h01(s)q̄, κP1(s) = h10(s)p̄ + h11(s)q̄ (17)

where deg(hi0p̄) ≤ deg(Pi ), deg(hi1q̄) ≤ deg(Pi ), i = 0, 1. To expressP0(s) as an
R[s]-linear combination of p̄ and q̄, we first seth00(s) := 0 andh01(s) := 0. Suppose
κLCV(P0) = αLCV(p̄) + βLCV(q̄). UpdateP0(s) by

P0(s) := kP0(s) − αs(deg(P0)−deg(p̄))p̄ − βs(deg(P0)−deg(q̄))q̄

and updateh00(s) andh01(s) by

h00(s) := h00(s) + αs(deg(P0)−deg(p̄)), h01(s) := h01(s) + βs(deg(P0)−deg(q̄)).
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Continue the above replacement untilP0(s) = 0. Note that the constantκ in the two
equations of (17) must be the same. Similarly, expressP1(s) in anR[s]-linear combination
of p̄ andq̄.

Step 4. Set

ui (s) = t1i (s)h00(s) + t2i (s)h01(s), vi (s) = t1i (s)h10(s) + t2i (s)h11(s)

i = 1, 2, 3, 4, u = (u1, u2, u3, u4) andv = (v1, v2, v3, v4).

Step 5. If LCV(p), LCV(q) andLCV(u) are linearly dependent and deg(u) ≥ deg(q),
then there exist constantsα, β andκ suchthat

κLCV(u) = αLCV(p) + βLCV(q).

Replaceu by

u := κu − αs(deg(u)−deg(p))p − βs(deg(u)−deg(q))q.

Repeat the above process until the conditions are no longer satisfied.

Step 6. If LCV(p), LCV(q) andLCV(v) are linearly dependent and deg(v) ≥ deg(q),
then there exist constantsα, β andκ suchthat

κLCV(v) = αLCV(p) + βLCV(q).

Replacev by

v := κv − αs(deg(v)−deg(p))p − βs(deg(v)−deg(q))q.

Repeat the above process until the conditions are no longer satisfied.

Step 7. Make equal the constantsκ multiplied to u andv in Steps 5and6. Setr = u + tv
and outputp, q andr.

Theorem 2. The algorithm MU-BASIS correctly computes the newly definedµ-basis of
the rational ruled surfaceP(s, t).

Proof. FromSteps 2–4, one has

κP0(s) = h00p̄ + h01q̄ =
4∑

i=1

(t1i h00 + t2i h01)Mi = uM̄T.

Similarly,

κP1(s) = vM̄T.

Thusu andv are the solutions of the system of equations (12); thatis, r = u + tv satisfies
(10). Steps 3can be done sinceP0(s) andP1(s) are moving planes followinḡP(s, t) and
thus can be expressed asR[s]-linear combinations ofp̄ andq̄.

To showr has the lowest degree ins, wenote that all solutions of the equation

M̄uT = 0
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are generated byp andq. Therefore the solution of the equation

M̄uT = P0(s)
T

takes the formu = h1p + h2q + u0, whereh1, h2 ∈ R[s] andu0 is a particular solution of
the above equation. Hence,Steps 5and6 reduce the degree ofr and guarantee thatr has
the lowest degree ins. �

We end this section with an example fromChenet al. (2001) to demonstrate the
algorithmMU-BASIS.

Let a rational ruled surfaceP(s, t) = P0(s) + tP1(s) be given by

P0(s) = (s3 + 2s2 − s + 3,−3s+ 3,−2s2 − 2s + 3, 2s2 + s + 2)

and

P1(s) = (2s3 + 2s2 − 3s + 7, 2s2 − 5s + 5,−6s2 − 8s + 4, 5s2 + 4s + 5).

Using the algorithm inChenet al.(2001), p andq are found to be

p = (22s + 31, 15s2 + 39s + 33, 19s2 − 11s − 28, 8s2 − 11s − 54)

q = (62s − 154, 4s2 − 39s − 259,−23s2 − 189s+ 207,−54s2 − 164s+ 309).

Next weobtain theµ-basisp̄ andq̄ of P̄(s, t) = p + tq

p̄ = 2526(1− 2s, 2s − 1,−2s − 2, s + 1)

q̄ = (746s2 − 73s, 48s3 − 650s2 − 119s+ 288,−48s3

+ 482s2 + 818s+ 432, 24s3 − 193s2 − 409s− 48)

and the transformation matrix

T =
(

454s+ 421 233s2 + 687s+ 421 239s2 − 315s 12s2 − 397s
−140s− 48 −70s2 − 178s −70s2 + 123s 112s

)

betweenM̄ andp̄, q̄. Now expressPi (s), i = 0, 1, in (17), where

h00 = 24s2 − 313s− 144, h01 = −2526, h10 = 48s2 − 674s− 336,

h11 = −5052, κ = −121 248

and obtain

u = (60 624+ 156 491s− 131 998s2 + 10 896s3, 218 927s− 61 659s2

− 60 624− 56 441s3 + 5592s4,−265 338s+ 240 999s2 − 82 367s3

+ 5736s4,−225 744s− 13 284s3 + 122 533s2 + 288s4)

v = 2(50 520+ 135 491s− 142 894s2 + 10 896s3, 192 335s− 83 739s2

− 70 728− 62 033s3 + 5592s4,−25 7778s+ 242 823s2 − 88 103s3

+ 5736s4,−216 216s− 13 572s3 + 131 773s2 + 288s4).

Reducing the degrees ofu andv by Steps 5and6, we finally obtainr = u + tv, where

u = (882, 410s+ 871, 379s− 1109,−62s− 966)

v = (1818, 742s+ 1718, 575s− 2389,−334s− 2352).
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4. Properties of the newly defined µ-basis

In this section we will explore some properties of theµ-basis consisting of the three
polynomialsp, q andr . In particular, we show that theµ-basis serves as the basis for both
the moduleLs,t and the ideal corresponding to the rational ruled surfaceP(s, t).

Theorem 3. The three elementsp, q and r = u + tv of theµ-basis areR[s, t]-linearly
independent. In particular,p, q, u are R[s]-linearly independent andp, q, v are R[s]-
linearly independent. Furthermore, for a specific parameter pair(s0, t0),

1. p(s0, t0), q(s0, t0), r(s0, t0) are linearly dependent if and only if(s0, t0) is a base
point ofP(s, t);

2. p(s0), q(s0) andu(s0) are linearly dependent if and only if s0 is a common zero of
a0(s), b0(s), c0(s) and d0(s);

3. p(s0), q(s0) andv(s0) are linearly dependent if and only if s0 is a common zero of
a1(s), b1(s), c1(s) and d1(s).

Proof. If p, q, r areR[s, t]-linearly dependent, then one can verify that the outer product
of p, q, r is the zero vector identically, which contradicts (10). Thereforep, q, r areR[s, t]-
linearly independent. Similarly,[p, q, u] = κP0(s) and [p, q, v] = κP1(s) implies that
p, q, u andp, q, v areR[s]-linearly independent.

For a specific parameter pair(s0, t0), p(s0, t0), q(s0, t0), r(s0, t0) are linearly dependent
if andonly if [p(s0, t0), q(s0, t0), r(s0, t0)] = 0, or if andonly if P(s0, t0) = 0 by (10), i.e.,
(s0, t0) is a basepoint ofP(s, t). Similarly, p(s0), q(s0) andu(s0) are linearly dependent if
and only if P0(s0) = 0; furthermore,p(s0), q(s0) andv(s0) are linearly dependent if and
only if P1(s0) = 0. �
Theorem 4. p, q and r form a basis for the moduleLs,t ; that is, for anyl(s, t) ∈ Ls,t ,
there exist polynomials hi (s, t), i = 1, 2, 3, such that

l(s, t) = h1p + h2q + h3r (18)

and the above expression is unique (thusLs,t is a free module). Furthermore,degt (h1p) ≤
degt (l), degt (h2q) ≤ degt (l), degt (h3r) ≤ degt (l); anddegs(h1p) ≤ degs(l), degs(h2q) ≤
degs(l), degs(h3r) ≤ degs(l) if LCV(p), LCV(q) and LCVs(r) are R[t]-linearly
independent, elsedegs(h1p), degs(h2q) and degs(h3r) are bounded bydegs(l) + m +
degs(r) − n.

Remark 1. Note the following facts.

1. It is easy to see thatLCV(p), LCV(q) andLCVs(r) areR[t]-linearly independent, if
one of the following holds: (i) deg(u) > deg(v) andLCV(p), LCV(q) andLCV(u)

are linearly independent; (ii) deg(v) > deg(u) andLCV(p), LCV(q) andLCV(v)

are linearly independent; (iii) deg(u) = deg(v) and LCV(p), LCV(q), LCV(u)

are linearly independent; (iv) deg(u) = deg(v) andLCV(p), LCV(q), LCV(v) are
linearly independent.

2. Since one always has degs(r) < deg(q) = m − µ, when LCV(p), LCV(q)

andLCVs(r) areR[t]-linearly dependent, degs(h1p), degs(h2q) and degs(h3r) are
generally bounded by degs(l) + m + (m − µ − 1) − n = degs(l) + 2m− n − µ − 1
in this case.
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Before proving the theorem, we need several lemmas.

Lemma 1. Let g(s) be the polynomial defined inProposition1. Then g(s) ∈ 〈a, b, c, d〉 ⊂
R[s, t].
Proof. Since g(s) = GC D([a, b], [a, c], [a, d], [b, c], [b, d], [c, d]), there exist poly-
nomials hi (s) ∈ R[s], i = 1, . . . , 6, such that

g = h1[a, b] + h2[a, c] + h3[a, d] + h4[b, c] + h5[b, d] + h6[c, d].
Obviously, [a, b] = b1a − a1b ∈ 〈a, b, c, d〉. Similarly, [a, c], [a, d], [b, c], [b, d] and
[c, d] all belong to〈a, b, c, d〉. Hence,g ∈ 〈a, b, c, d〉. �

Lemma 2. For any moving plane Ax+ By + cz + D ∈ Ls,t , there existpolynomials
hi (s, t) ∈ R[s, t], i = 1, . . . , 6, such that

g ∗ (Ax + By + Cz+ D) = h1(dx − a) + h2(dy − b) + h3(dz− c)

+ h4(bx − ay) + h5(cy − bz) + h6(cx − az).

Here g(s) is asdefined inProposition1.

Proof. By Lemma 1, there exist polynomialski (s) ∈ R[s] suchthat g = k1a + k2b +
k3c + k4d. Hence

g ∗ (Ax + By + Cz+ D) = (k1a + k2b + k3c + k4d)(Ax + By + Cz+ D).

SinceAx + By + Cz+ D = 0 follows P(s, t), one has

Aa + Bb+ Cc+ Dd ≡ 0.

Thus

a(Ax + By + Cz+ D) = (−Bb− Cc− Dd)x + aBy+ aCz+ aD

= B(ay − bx) + C(az− cx) + D(a − dx).

Similarly, one can show thatb(Ax + By + Cz + D), c(Ax + By + Cz + D) and
d(Ax + By + Cz + D) are allR[s, t]-linear combinations ofdx − a, dy − b, dz − c,
bx − ay, cy − bzandcx − az; hence, so isg ∗ (Ax + By + Cz+ D). �

Lemma 3. dx − a, dy− b, dz− c, bx− ay, cy− bz and cx− az are allR[s, t]-linear
combinations of p, q, r , where p, q, r are theµ-basis.

Proof. By (10), one can directly verify that

κ(dx − a) = (q3r2 − q2r3)p + (r3 p2 − r2 p3)q + (p3q2 − p2q3)r

whereκ is a nonzero constant, sodx − a is an R[s, t]-linear combination of p, q, r .
Similarly,dy− b, dz− c, bx− ay, cy− bzandcx− azare allR[s, t]-linear combinations
of p, q, r . �

Lemma 4. Any moving plane Ax+ By+ Cz+ D ∈ Ls,t is anR[s, t]-linear combination
of p, q, r .
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Proof. FromLemmas 2and3, there exist polynomials̄hi ∈ R[s, t], i = 1, 2, 3, such that

g ∗ (Ax + By + Cz+ D) = h̄1 p + h̄2q + h̄3r

or equivalently

g(A, B, C, D) = h̄1p + h̄2q + h̄3r.

In the following, we want to showg | h̄i , i = 1, 2, 3.
Forming the outer product on both sides of the above equation withq, r, we get

g[(A, B, C, D), q, r] = h̄1[p, q, r] = κ h̄1(a, b, c, d).

SinceGC D(a, b, c, d) = 1, g | h̄1. Similarly, g | h̄2 andg | h̄3. Thus we conclude that

Ax + By + Cz+ D = h1 p + h2q + h3r

for somehi ∈ R[s, t], i = 1, 2, 3. �

Now we are ready to proveTheorem 4.
By Lemma 4, p, q andr are a generating set of the moduleLs,t . On theother hand, since

p, q andr are linearly independent byTheorem 3, the expression (18) is unique. That is,
p, q andr form a basis ofLs,t . The firstpart of the theorem is proved.

For the next part, we first prove the bounds on the degrees ofhi , i = 1, 2, 3, with respect
to t . Assume that the maximumdegree ofh1p, h2q andh3r in t is l . Write

hi =
l∑

j =0

hi j (s)t
j , i = 1, 2, h3 =

l−1∑
j =0

h3 j (s)t
j .

If degt (l) < l , then the leading term int on the right-hand side of equation (18) must
vanish, that is,

h1l p + h2l q + h3,l−1v ≡ 0

which impliesp, q, v areR[s]-linearly dependent, a contradiction withTheorem 3. Thus
we must have degt (l) ≥ l .

Next we prove the bounds on the degrees ofhi , i = 1, 2, 3, with respect tos. From
(18), we have[p, q, l] = h3[p, q, r] = κh3P(s, t), so degs(h3) ≤ degs(l) + m − n,
wherem is the implicit degree of the rational ruled surfaceP(s, t). Hence, degs(h3r) ≤
degs(l) + m + degs(r) − n.

If LCV(p), LCV(q) andLCVs(r) areR[t]-linearly independent, then from[p, q, r] =
κP(s, t), one has deg(p) + deg(q) + degs(r) = degs(P), so degs(r) = n − m. Hence
degs(h3r) ≤ degs(l) in this case. The bounds on the degrees ofh1p and h2q follow
similarly. �

Next we discuss the relationship of theµ-basisp, q, r and the ideal corresponding to
P(s, t).

Theorem 5. Let f(x, y, z) = 0 be the implicit equation of rational ruled surfaceP(s, t).
Then f(x, y, z) ∈ 〈p, q, r 〉.
Proof. By Proposition 4, f (x, y, z) ∈ 〈p, q〉 ⊂ 〈p, q, r 〉. �
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Theorem 6. Let

I := 〈dx − a, dy − b, dz− c〉 ⊂ R[x, y, z, s, t] (19)

be the ideal corresponding to rational ruled surface(1) and g(s) be the polynomial as
defined inProposition1. Then

g〈p, q, r 〉 ⊂ I ⊂ 〈p, q, r 〉. (20)

In particular, if a rational ruled surfaceP(s, t) does not have s-finite base points, then
I = 〈p, q, r 〉.
Proof. By Lemma 3, dx − a, dy − b, dz− c ∈ 〈p, q, r 〉. Hence I ⊂ 〈p, q, r 〉. Next we
showg〈p, q, r 〉 ⊂ I . Let

M̃ =




0 [c, d] [d, b] [b, c]
[d, c] 0 [a, d] [c, a]
[b, d] [d, a] 0 [a, b]
[c, b] [a, c] [b, a] 0


 .

By Proposition 2, to provegp, gq ∈ I , we only have to prove that, for each rowv of the
matrix M̃, v ·X ∈ I . Since[c, d]y + [d, b]z+ [b, c] = (d1z− c1)(dy− b) − (d1y − b1) ×
(dz− c) ∈ I , for the first rowv of matrix M̃, v · X ∈ I . Similarly, one can show that, for
the other three rows of̃M, v · X ∈ I also holds. Thusgp, gq ∈ I .

Next we want to provegr ∈ I . By Lemma 2, there exist polynomialshi [s, t] ∈ R[s, t],
i = 1, . . . , 6, such that

gr = h1(bx − ay) + h2(cx − az) + h3(dx − a) + h4(cy − bz) + h5(dy − b)

+ h6(dz− c)

= (h1y + h2z + h3)(dx − a) + (−h1x + h4z + h5)(dy − b)

+ (−h2x − h4y + h6)(dz− c) ∈ I .

The second part of the theorem is proved.
By Proposition 1, whenP(s, t) does not haves-finite base points,g(s) = 1 andhence

I = 〈p, q, r 〉. �

Remark 2. When the rational ruled surface P(s, t) has base points, in generalI 	=
g〈p, q, r 〉 and I 	= 〈p, q, r 〉. However, ifGC D(a1, b1, c1, d1) = 1, then one can show
that

g〈p, q〉 = I ∩ R[x, y, z, s]. (21)

FromTheorem 6and the aboveRemark 2, we see that theµ-basisp, q, r generally does
not serve as a basis of the idealI and that the implicit equation ofP(s, t) does not belong
to the idealI . However, in the following wewill show that p, q, r serve as a basis for the
ideal

I ′ := 〈dx − a, dy − b, dz− c, dw − 1〉 ∩ R[x, y, z, s, t] (22)

which is the “proper” ideal corresponding to the rational ruled surfaceP(s, t).
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Lemma 5. Let I ′ be the ideal defined in(22), and g(s) be the polynomial defined in
Proposition1. Then I′ is a prime ideal, and g(s) /∈ I ′.

Proof. It is enough to prove that the ideal

I ′′ := 〈dx − a, dy − b, dz− c, dw − 1〉 ⊂ R[x, y, z, w, s, t]
is prime.

Consider the ring homomorphism:φ : R[x, y, z, w, s, t] → R[w, s, t] thatsendsx, y,

z, w, s, t to aw, bw, cw,w, s, t respectively. Sinced ∈ R[s, t], one easily sees thatdw−1
is irreducible inR[w, s, t]. Thus〈dw−1〉 is a prime ideal, which means thatφ−1(〈dw−1〉)
is also prime. Now we show thatI ′′ = φ−1(〈dw − 1〉), which implies I ′′ is prime.

It is easy to see thatf ∈ φ−1(〈dw − 1〉) if and only if f (aw, bw, cw,w, s, t) =
h(w, s, t) × (dw − 1) for some polynomialh. Since dx − a|x=aw = a(dw − 1),
dx − a ∈ φ−1(〈dw − 1〉). Similarly, dy− b, dz− c, dw − 1 all belong toφ−1(〈dw − 1〉).
HenceI ′′ ⊂ φ−1(〈dw − 1〉). Conversely, supposef ∈ φ−1(〈dw − 1〉). By thebinomial
theorem,one has

f (x, y, z, w, s, t) = f (x − aw + aw, y − bw + bw, z − cw + cw,w, s, t)

= element of〈x − aw, y − bw, z − cw〉
+ f (aw, bw, cw,w, s, t).

Notice thatx−aw = w(dx−a)−x(dw−1), sox−aw ∈ I ′′. Similarly, y−bw, z−cw ∈
I ′′. Hence f ∈ I ′′. Therefore, I ′′ = φ−1(〈dw − 1〉) is prime. Furthermore, it is easy to see
thatg /∈ φ−1(〈dw − 1〉) ∩ R[x, y, z, s, t] = I ′. This completes the proof. �

The idealI ′ is closely related with the moving surfaces ofP(s, t).

Theorem 7. Let F(x, y, z, s, t) be a moving surface as defined in(6). Then F(x, y, z, s, t)
followsP(s, t) if and only if F∈ I ′.

Proof. For sufficiency, supposeF(x, y, z, s, t) ∈ I ′, then there exist polynomials
A, B, C, D ∈ R[x, y, z, w, s, t] suchthat

F = A(dx − a) + B(dy − b) + C(dz− c) + D(dw − 1).

Settingx = a/d, y = b/d, z = c/d andw = 1/d in the above equation immediately gives

F(a/d, b/d, c/d, s, t) ≡ 0.

HenceF(x, y, z, s, t) is a moving surface followingP(s, t).
For necessity, letF(x, y, z, s, t) be a moving surface followingP(s, t). Divide F by

dx−a, dy−b, dz−c anddw −1 (usingx, y, z andw as the main variables) respectively,
then there exist polynomialshi ∈ R[x, y, z, w, s, t], i = 1, 2, 3, 4 andh5 ∈ R[s, t] such
that

dk F = h1(dx − a) + h2(dy − b) + h3(dz− c) + h4(dw − 1) + h5,

wherek is a nonnegative integer. Substitutingx = a/d, y = b/d, z = c/d andw = 1/d
into the above equation, one getsh5 ≡ 0. Thusdk F ∈ I ′. By Lemma 5, I ′ is prime and
d /∈ I ′, soF ∈ I ′. The theorem is thus proved. �
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Lemma 6. Let p0 = p(x, y, z, s0), q0 = q(x, y, z, s0) and r0 = r (x, y, z, s0, t). Then
syz(p0, q0, r0) ⊂ R[x, y, z, t]3 is generated byv1 = (q0,−p0, 0), v2 = (−r0, 0, p0) and
v3 = (0, r0,−q0).

Proof. Let

B =
(

p1(s0) p2(s0) p3(s0) p4(s0)

q1(s0) q2(s0) q3(s0) q4(s0)

)
.

By Proposition 3, the rank of the matrixB is 2. Weprove the lemma for the following two
cases.

Case 1. The first three columns of the matrixB have rank 1. In this case, there exist
constantsα, β (at least one of them is nonzero) such that

α(p1(s0), p2(s0), p3(s0)) + β(q1(s0), q2(s0), q3(s0)) = 0.

Thenαp0 + βq0 = αp4(s0) + βq4(s0) is a nonzero constant since rank(B) = 2. Thus
〈p0, q0〉 = R[x, y, z, t], which in turn implies that〈p0, q0, r0〉 = R[x, y, z, t]. Now the
argument of Lemma 1 ofCox et al.(1998b) (see also Exercise 15 on page285 ofCox et al.,
1998a) implies thatsyz(p0, q0, r0) is generated byv1, v2 andv3.

Case 2. The first three columns of the matrixB have rank 2. We will show in this case that
p0, q0, r0 form a regular sequence, that is,p0, q0, r0 have the following properties:

– p0 is not a zero divisor inR[x, y, z, t].
– q0 is not a zero divisor inR[x, y, z, t]/〈p0〉.
– r0 is not a zero divisor inR[x, y, z, t]/〈p0, q0〉.

Then a standard result in commutative algebra guarantees that the syzygies onp0, q0, r0
have the desired form.

Since the first three columns of the matrixB have rank 2, we can make an affine change
of coordinates so thatp0 = x andq0 = y. Then

r0 = (u1(s0) + v1(s0)t)x + (u2(s0) + v2(s0)t)y + (u3(s0) + v3(s0)t)z + u4(s0)

+ v4(s0)t .

It is obvious thatp0 = x is not a zero divisor inR[x, y, z, t] and thatq0 = y is not a
zero divisor inR[x, y, z, t]/〈p0〉 = R[y, z, t]. Furthermore, sinceR[x, y, z, t]/〈p0, q0〉 =
R[z, t], it follows thatr0 gives a nonzero divisor inR[x, y, z, t]/〈p0, q0〉 if andonly if

(u3(s0) + v3(s0)t)z + u4(s0) + v4(s0)t 	= 0 in R[z, t] (∗).

If p(s0) = (1, 0, 0, 0), q(s0) = (0, 1, 0, 0) and u(s0) are linearly independent, then
u3(s0) 	= 0 or u4(s0) 	= 0; otherwise,p(s0), q(s0), v(s0) must be linearly independent
by Theorem 3, sov3(s0) 	= 0 or v4(s0) 	= 0. In either case, equation(∗) holds. Thusr0 is
not a zero divisor inR[x, y, z, t]/〈p0, q0〉. Therefore p0, q0, r0 form a regular sequence.
This completes the proof of the lemma.�

Lemma 7. Suppose h f∈ 〈p, q, r 〉 ⊂ R[x, y, z, s, t], where h∈ R[s]. Then f ∈ 〈p, q, r 〉.
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Proof. We will first show that if (s − s0) f ∈ 〈p, q, r 〉, then f ∈ 〈p, q, r 〉. Without
loss of generality, we assumes0 = 0. Sinces f ∈ 〈p, q, r 〉, there exist polynomials
hi ∈ R[x, y, z, s, t], i = 1, 2, 3 such that

s f = h1 p + h2q + h3r.

Write hi = ∑ni
j =0 hi j sj , i = 1, 2, 3, wherehi j ∈ R[x, y, z, t]. Sinces|h1 p + h2q + h3r ,

one gets

h10p0 + h20q0 + h30r0 ≡ 0

wherep0 = p(x, y, z, 0), q0 = q(x, y, z, 0) andr0 = r (x, y, z, 0, t). By Lemma 6, there
exist polynomialsHi ∈ R[x, y, z, t], i = 1, 2, 3 such that

h10 = H1q0 − H2r0, h20 = H3r0 − H1p0, h30 = H2p0 − H3q0

so

h10p + h20q + h30r = H1(q0p − p0q) + H2(p0r − r0 p) + H3(r0q − q0r ).

Since

q0 p − p0q =
(

q −
m−µ∑
i=1

qi s
i

)
p −

(
p −

µ∑
i=1

pi s
i

)
q

= s

(
q

µ∑
i=1

pi s
i−1 − p

m−µ∑
i=1

qi s
i−1

)

q0p− p0s ∈ s〈p, q, r 〉. Similarly, p0r −r0 p, r0q−q0r ∈ s〈p, q, r 〉. Henceh10p+h20q+
h30r ∈ s〈p, q, r 〉. But

s f = s


p

n1∑
j =1

h1 j s
j −1 + q

n2∑
j =1

h2 j s
j −1 + r

n1∑
j =1

h3 j s
j −1


+ h10p + h20q + h30r.

Thuss f ∈ s〈p, q, r 〉, i.e., f ∈ 〈p, q, r 〉.
Now lets0 be a zero ofh(s), andh′ = h/(s − s0). By the above result,h′ f ∈ 〈p, q, r 〉.

The general result holds by mathematical induction on the degree ofh. �

Lemma 8. Let f ∈ I ′ ⊂ R[x, y, z, s, t]. Then

gN f ∈ 〈p, q, r 〉
for some positive integer N. Here g is the polynomial defined inProposition1.

Proof. From f ∈ I ′, weknow that

f = A(dx − a) + B(dy − b) + C(dz− c) + D(dw − 1)

for some polynomialsA, B, C, D ∈ R[x, y, z, w, s, t]. Sincew does not appear inf ,
settingw = 1/d gives

f = A(x, y, z, 1/d, s, t)(dx − a) + B(x, y, z, 1/d, s, t)(dy − b)

+ C(x, y, z, 1/d, s, t)(dz− c).
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Multiplying both sides of the above equation bydM for M sufficiently large shows that
dM f ∈ I , whereI is the ideal defined in (19). Next from

aM f = (dx − (dx − a))M f

and the binomial theorem, we obtainaM f ∈ I , andbM f, cM f ∈ I follow similarly. Now
settingN = 4M, one can easily show that

〈a, b, c, d〉N f ⊂ I .

ThengN f ∈ I ⊂ 〈p, q, r 〉 follows immediately sinceg ∈ 〈a, b, c, d〉 by Lemma 1. �
Theorem 8. Let I ′ be the ideal defined in(22). Then

I ′ = 〈p, q, r 〉. (23)

Proof. FromTheorem 6, we haveg〈p, q, r 〉 ⊂ I ⊂ I ′. Since byLemma 5I ′ is prime and
g /∈ I ′, 〈p, q, r 〉 ⊂ I ′.

Conversely, supposef ∈ I ′, then byLemma 8, gN f ∈ 〈p, q, r 〉 for some positive
integerN, and so f ∈ 〈p, q, r 〉 by Lemma 7. Hence I ′ ⊂ 〈p, q, r 〉. The theorem is thus
confirmed. �
Remark 3. Theorem 5is a corollary ofTheorems 7and8.

Remark 4. In Cox (2001), Cox introduces the notion of astrong µ-basisfor a general
rational surface. The strongµ-basis is defined as a basis of the syzygy module of the
rational surface. At this point, theµ-basis defined in this paper for a rational ruled surface
resembles the strongµ-basis. However, the strongµ-basis is defined for triangular surfaces
in projective space, and, in general, the strongµ-basis does not exist. In contrast, theµ-
basis defined in this paper for a rational ruled surface always exists.

5. Conclusion

By introducing a polynomialr (x, y, z, s, t) that is linear inx, y, z and t , we have
redefined theµ-basis of a rational ruled surface to be three polynomialsp, q andr such
that the implicit equation of the surface is given by the resultant ofp andq with respect
to s and the parametric equation of the surface can be recovered fromp, q andr . We also
presented an efficient algorithm for computingp, q andr , anddiscussed some properties
of the newly definedµ-basis. In particular, we show that the newµ-basis serves a basis for
both the moving plane module and the moving plane ideal corresponding to the rational
ruled surface. These results are helpful for understanding the construction of theµ-basis
for a general rational surface—a problem worthy offurther study.
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