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Abstract

Theu-basis of a rational ruled surfa@s, t) = Pg(s) +tP1(s) is defined in Cheet al. (Comput.
Aided Geom. Design 18 (2001) 61) to consist of two polynomjels vy, z, s) andq(x, v, z, S) that
are linear inx, y, z. It is shown therehat the resultant op andq with respect te gives themplicit
equation of the rational ruled surface; however, the parametric equRdson) of the rational ruled
surface cannot be recovered fromand q. Furthermore, the:-basis thusdefined for a rational
ruled surfacedoes not possess many nice properties that hold fopthasis of a reional planar
curve (Comput. Aided Geom. Design 18 (1998) 803). In this paper, we introduce another polynomial
r(x,y, zs,t) that is linear inx, y, z andt such thatp, g, r can be used to recover the parametric
equationP(s, t) of the rational ruled surface; hence, we redefine tHeasis to consist of the three
polynomialsp, g, r. We present aefficient algorithm for computing the newly-defingdbasis, and
derive some of its properties. In particular, we show that the medvasis serves as a basis for both
the moving plane module and the moving plane ideal corresponding to the rational ruled surface.
© 2003 Elsevier Ltd. All rights reserved.

Keywouds: p-Basis; Moving plane; Implicitization; Module; Rational ruled surface

1. Introduction

A rational ruled surface of degreein homogeneous form is defined as

P(s,t) = Po(s) + tP1(s) := (a(s, t), b(s, t), c(s, t), d(s, 1)) Q)
where
Pi(s) = (@ (s), bi(s), Ci(s), di(s)), i=01 (2)
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and the maximum degree @ (s), bi(s), ¢i(s),di(s), i = 0,1, isn. To avdd the
degenerate case whelPgs, t) parameterizes a line, we assume tRats) andP1(s) are
R[s]-linearly independent. Furthermore, we assume that the rational ruled sutjase (
properly parameterized (s, t).

In a previous paperGhenet al, 2001, we studied theu-basis of a rational ruled
suface, and based on the-basis, derived a closed-fornepresention of the implicit
equation of a rational ruled surface. Thebasis is defined to be two polynomigls=
p(x,Yy, z s) andq = q(x, Y, z, ) that are linear irx, y, z and of degreg.(u < [m/2])
and m — u in s respectively, wherem is the degree of the implicit equation. The
implicit equation of the surface is then obtained merely by taking the resultapt of
and q with respect tos. The idea of au-basis was originated in a series of papers by
Sederbergrd his collaborators where a novel technique catfexying curves and moving
surfaceswas proposed to implicitize rational curves and surfacesderberg et gl1994
Sederbey and Chenl1995 Sederbay andSaitg 1995. Cox et al.(1998h) apgdied tools
from commutative algebra such as modules to stuying linesand define thec-basis
of a planar rational curve. The-basis of a planar rational curve can be used not only
to generate a closed-form representation of the implicit equation, but also to recover the
parametric equation of the rational curve. Thus,iheasis serves as a compact and useful
representation of a planar rational curve—cecting its implicit equation and parametric
equation, and facilitating the study of many properties of the curve.

The u-basis of a rational curve is subsequently generalized to rational ruled surfaces in
Chenet al. (2001). However, unlike the case of a planar rational curve, the parametric
equationP(s, t) of a rational ruled surface cannot be recovered fromtHeasisthus
defined, sincep andq do not involve the variable Furthemore, theu-basis of a rational
ruled surface does not possess many nice properties that hold fartihsis ofa planar
rational curve. To make the-basis of a rational ruled surface complete, in this paper we
introduce another polynomielx, vy, z, s, t) thatis linear irx, y, zandt so thatp, q,r can
be used to recover the parametric equabkgs) t) of the rational ruled surface; hence, we
redefine theu-basis to consist of the three polynomialsq, r.

The remainder of the paper is organized as followsSéttion 2 we provide some
preliminaries and recall some basic results fr@henet al. (200]). In Section 3 we
redefine thq:-basis of a rational ruled surface, prove its existence, and present an efficient
algorithm for computing this newly-defingdbasis. InSection 4 we give some mperties
of the u-basis; in particular, we show that tixebasis is a basis for both the moving plane
module and the moving plane ideal correspondtipe rational ruled surface. Finally, we
conclude the paper iection 5

2. Preliminaries

Let R denote the polynomial rinB[s] or R[s, t] over the fieldof real numbers. LeR™
denote the set afi-dimensional row gctors with entrieR. Similarly, let R™" denote the
set ofm x n matiices with entries irR.
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For anyf(s) = (f1(s), f2(s), fa(s), fa(s)) € R[s]*, thedegreeof f(s) is the maximum
degree offi(s),i =1, 2, 3,4, i.e., degf) = maxi<i<4 deq fi(s)). Write

n
fs) =Y (fir, fiz, fiz, fia)s
i=0
wheren = dedf). The leading coefficient vectoof f(s) is defined to beLCV(f) =
(fn1, fn2, fns3, fra). For exanple, forf(s) = (2s — 1, s24+3s+1,282 — 1,5+ 2), we
have de¢f) = 2 andLCV(f) = (0, 1, 2, 0).
A setM c RMis called asubmoduleof R™ if hif; + hof, € M for anyfy,f, € M
andhy, hy € R. A submoduleM c R™ is finitely generatedf there exists a finite set of

elementd; e M,i =1,..., k, such hat anym € M can be expressed by

m = hafq + - - + hify, 3)
whereh; € R,i =1, ..., k; and inthis case the set of tHeis called agenerding setof M.
If the above express) is unique for anym € M, thenfy, ..., fx are called dasisof the
moduleM. A module having a basis is calledr@e moduleFor any(fy, ..., fi) € R,
the set

syz fi, ..., fi) :={(h1,....h) € R hyfy + -+ 4 hcfk = 0} (4)

is a nodule overR, called asyzygymodule Cox et al, 19983. Syzygy modules play an
important role in studying moving lines and moving planes.

A movingplane denoted byL (s, t) := (A(S, t), B(s, 1), C(s, t), D(s, 1)), is a family
of planesA(s, t)x + B(s, t)y + C(s,t)z + D(s, t) = 0 with parameterss, t). A moving
plane is said tdollow the rational ruled surfade(s, t) (1) if

L(s,t) -P(s,t) = A(s, t)a(s, t) + B(s, t)b(s, t) + C(s, t)c(s, t)

+ D(s, t)d(s,t) = 0. (5)
Similarly, amoving surfacef degreemin x, y, zand ordet in s, t is a family of surfaces
Foy.zst= > fijxy st (6)
O<i+j<l

where fijj (X,y,2) € R[x,y,z] are polynomials of degreen. The mwing surface
F(x,y,zs,t) is said tofollow P(s, t) if

d™F(a/d, b/d, c/d,s,t) = 0. (7

Let Lst be the set of all moving planes that follow the rational ruled surfa@et).
ThenLst is a yzygy module oveR[s, t].

Let Ls denote the set of all moving planes that involve only the paransetauch a
moving plane is denoted bly(s) := (A(s), B(s), C(s), D(s)) with L(s) - P(s,t) = 0.
ThenLs is a free module oveiR[s], as shown irChenet al. (200)). Some of the main
resuts in Chenet al.(200]) are stated in the following propositions.

Proposition 1. Let g(s) = GCD([a, b], [a, c], [a,d], [b, c], [b, d], [c, d]) and A be the
maximum degree &, b], [a, c], [a, d], [b, c], [b, d], [c, d], where[a, b] = ap(s)b1(S) —
a1(s)bo(s) and[a, cl,[a, d], [b, c], [b, d] and[c, d] are defined similagl. Then tle imgdicit
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degree of the rational ruled surfad®(s, t) is m = A — degg). Furthermore P(s, t) does
not have s-finite base points if and only ifsy = 1. (A base point(sp, tg) of P(s, t) is
called s-finite if g is finite.)

Proposition 2. Let g(s) be as defined ifPropositionl. Then the modulé s is generated
by the rows of the ftlowing matrix:

0 [c,d] [d,b] [b,c]

_ 1 [l[dc 0 [ad Ica]

g |I[bd [dal 0 [ab]
[c,b] [a,c] [b,a] 0

(8)

andrankM) = 2 for any parameter value s.

Proposition 3. There exist two elements = (p1(S), p2(S), p3(S), pa(s)) € Ls and

q = (qu(s), 02(S), 93(S), Aa(9)) € Ls of degreeu(n < [m/2]) and m— w, respectively,
suchthat p and q form a basis ofLs. Here m is the implicit degree of the rational
ruled surfacg1). Furthermorep(s) andq(s) are linearly independent for any parameter
value s. In particular, LC\{p) and LCV(q) are linearly independent.

Proposition 4. Letp andq be as defined ifroposition3. Denote pXx, Yy, z,s) = p - X
and q(x, Y,z s) = q-X, whereX = (X, Y, z, 1). Then he imgicit equation ofP(s, t) is
given by the resultant of p and q with respectto s.

The polynomialsgp andq, or equivalently, the vector polynomiafsandq, are defined
in Chenet al. (200)) to be au-basis of the rational ruled surfad¥s, t). An efficient
algorithm is presented i€henet al. (2001 for conputing p andg. Note hat p andq
cannot be used to recover the parametric equatid(®ft) of the rational ruled surface,
sincep andq do not involve the parameter

3. Redefinethe u-basis of arational ruled surface

In this section we introduce a polynomidk, y, z, s, t) thatis linear inx, y, zandt, and
redefine thei-basis of the rational ruled surfabés, t) to consist of the three polynomials
p, g andr. We first prove the existence of such a polynomiaand the present an
algorithm for computing the newly defingdbasisp, q andr.

Weintend to find a vector valued polynomial

r(s,t) :=u(s) +tv(s) := (ri(s, t), ra(s, t), ra(s, t), ra(s, t)) € Lst 9)
where

u(s) = (U1(s), U2(s), us(s), ua(s)) € Rs]*,

V(S) = (v1(9), v2(S), v3(9), va(9)) € R[s]*
and

ri(s,t) = uj(s) + vi (S, i=12234
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such that the parametric equatid?(s, t) can be recovered from, g andr; that is,

[p,q,r] =«P(s, t) (10)

for some nonzero constaint Here[p, q, r] is theouter productof p, g andr, which is
defined by

P2 P3 P4 Pt P3 P4 P1 P2 P4
[p.q,r]= ( Q2 O3 Q4|,— |01 O3 Q4.0 Q2 Oa|,
o I3 14 rh s 1r4 ri ro 14
P1 P2 P3
-t G2 03 ) (112)
rpn ra 13

In the following, we show that such a polynomialways exists, and we devise an efficient
algorithm for computing the polynomial with the lowest degree is. We recfine the
u-basis of the rational ruled surfacg) o be the three polynomialp = p-X,q = q- X,

r =r-X,whereX = (x,V,z 1), or directly to be the three vector valued polynomials
p, g andr. Some poperties of the newly defined-basis will be presented in the next
section.

Theorem 1. There exists a vector valued polynomi&, t) € Lst as defined ir(9) such
that(10) holds.

Proof. Takeu; andvi,i =1, 2, 3, 4, as unknowns and rewrit&@) in matrix form
M), v(s)") =k(Po(s)", P1(s)T) (12)

where

0 [3,4] [4,2] [2 3]
[4, 3] 0 [1,4] [3,1]
[2,4] [4,1] 0 [1,2]
[3,2] [1,3] [2,1] 0

M= (13)

and[i, j1 = pigj — PjGi-
We aregoing to prove that the system of equatiohg)(has a saltion r(s, t). To this
end, consider a rational ruled surface defined by

P(s,t) = p(s) + tq(s). (14)

By Proposition 3p(s) andq(s) are linearly independent for any parameteiherdore,
P(s, t) does not have argfinite base point; for otherwise, there exist soimandsy such
thatp(so) + toq(sp) = 0, which imgies thatp(sp) andq(sp) are linearly dependent. It
follows, by Proposition 1thatGC D([1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]) = 1. Since
p-Pi(s) =0andqg-Pj(s) =0,i = 0,1, Pyg(s) andP41(s) are moving planes that follow
P(s, t). By Proposition 2Po(s) andP1(s) can be generated by the rows of the malvix
Hence, there exists a polynomigls, t) satisfying @0).
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Furthemore, since
r I ra I

Ps.t)-r(s.ty=| Pt P2 Ps Pal_
g 02 O3 Qs

rh ro r3 Iy
r :=r(s,t) - X = 0is a movig plane that follow#(s, t); thatis,r(s,t) € Lsx. O

Below we preserdn algorithm for computing the newly defingdbasisp, q, r, bagd
on the proof ofTheorem Jand the algorithm developed@henet al.(2001) for computing
the two elementp, g. Before hat, we first med to modify the algorithm i€henet al.
(200]) so as to use it to aopute, besidep andq, the matix for transforming the rows of
the matrixM to p andg, i.e., a matrixT € R[s]?** suchthat

_ (P
TM_(q>. (15)

We begyin with some notation, followingChenet al. (200]). LetE; = (0,...,0,1,
0,...,0) € R[s]™ be the standard basis vectors= 1,2, ..., m, where 1§ in theith
postion in the vector. Anyf(s) € R[s]™ can be written as

n m
f(s) = ZZ fijS'E;j
i=0 j=1
wheren = dedf) and therefore at least one of the coefficiefs, j = 1,2,...,m, is
nonzero. Let] be the smallest index such thhf; is nonzero. Then we say thatontains
thebasis vectoiEj; and fnj, s"Ej and fnjs"E; are called théeading coefficient, leading
monomialandleading termof f (denoted byL C(f), LM (f) and LT (f)), respectively. For
exampe, forf(s) = (2s— 2, 35+ 1, s — 3s+ 2, 25° + s) € R[s]?, thebasis vector i€,
LC(f) = 3, LM(f) = s?E5 andLT (f) = 3s2E.
Now we outline the algorithm for computing, g and the transformation matrix
betweenp, g andM as defined in§). For convenience of description, we assume that
the coefficients are integers.

Algorithm: PMU-BASIS
Input: A parametic equatiorP(s, t) of the rational ruled surfacdl.

Output: Two elementsp, q € R[s]* of the u-basis, and the transformation matfiix
between the generating matiik andp, g.

Step 1. Set
vi1 = (0, [c,d], [d, b], [b, c])/g, vz = ([d, c], 0, [a,d], [c,a])/g,
vz = ([b,d], [d, a], 0, [a, b])/g, v4 = ([c, b], [a, c], [b, a], 0)/g,
andS = {v1, V2, v3, v4}. Furthemore, sefl = | € R[s]**4, wherel is the identity matrix.

Step 2. Choosev; andvj from S suchthat LT (vi) and LT (vj) contain the same basis
vector. Assume deg;) > dedv;j).
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Step 3. Rephcev; by
o LCM(LC(vi), LC(v})) _ LCM(LC(vj), LC(v}))
' LC(vj) ! LC(v))
whereLCM(k, 1) is the least common multiple &fandl. UpdateT by replacing theth
row T; of T by
T LCM(LC(vj), LC(vj))T. _ LCM(LC(vi), LC(VJ-))Sdeg(Vi
b LC(vj) ! LC(v))
Step 4. If vi = 0, removev; from S, anddelee theith row of T.

Sdegvi )—deqv;j )Vj

)*dquJ)TJ )

Step 5. If the leading term of each element$®has a different basis vector, then stop; else
go toStep 2

The correctness of the above algorithm can be shown along the same line as in
Chenet al.(2001J).

Next we desche the main algorithm for computing the new elemenf the u-basis.
Note thatStep 3of this algoithm is based on the observation tiats) andP1(s) are two
moving planes following the rational ruled surfaRes, t) = p(s) + tq(s).

Algorithm: MU-BASIS
Input: A parametic equationP(s, t) of the rational ruled surface.).
Output: Threeelement, q, r of the u-basis ofP(s, t).

Step 1. Conputep andq using the algorithm developed ®henet al.(2007).

Step 2. Compute theu-basisp andq of the rational ruled surfac@(s, t) defined in (4)
and the transformation matrik betweerp, g andM T defined in (3), using the algorithm

PMU-BASISLetM;, i = 1,2, 3,4, be the rows oM and letT = (tij)2x4. Then
a a
p=> tiMi, q=) taMi. (16)
i=1 i=1

Step 3. ExpressPo(s) and Pi(s) as R[s]-linear comlinations of p, q; that is, find
polynomialshij (s), i, ] = 0, 1, and a nonzero constantsuch hat

kPo(s) = hoo(S)p + ho1(9)4, kP1(s) = h1o(s)p + h11(9)q (17)

where deghiop) < degPj), deghi1q) < degP;),i = 0,1. To expres$o(s) as an
R[s]-linear comiination of p and @, we first sethgo(s) := 0 andhopi(s) := 0. Suppose
kLCV(Pg) = «LCV(p) + BLCV(Q). UpdatePy(s) by

Po(s) := kPq(s) — as(deqpo)*degﬁ))r) _ lgs(deqpo)*deqﬁﬂ)q
and updatdigo(s) andho1(s) by

hoo(s) := hoo(s) + as@eIPO=dIR)  hy(s) 1= hoy(s) + ps(@edPo)~deddD),
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Continue the above replacement uriRd(s) = 0. Notethat the constant in the two
equations of17) must be he same. filarly, express1(s) in anR[s]-linear comlination
of p andg.

Step 4. Set

Ui (s) = t1i (S)hoo(s) + ta2i (S)hoi(s), vi (S) = t1i (S)h10(S) + t2i (S)h11(S)
i =1,2, 3,4,u=(ug, Uz, Uz, Ug) andv = (v1, v2, v3, V4).
Step 5. If LCV(p), LCV(q) andLCV (u) are linearly dependent and dey > dedqq),
then there ext constantsy, 8 andx suchthat
kLCV(u) =aLCV(p) + BLCV(Q).
Rephceu by
U = kU — gsdedw—dedp)y _ ggldegu)—dega)q

Repeat the above process until the conditions are no longer satisfied.

Step 6. If LCV(p), LCV(q) andLCV(v) are linearly dependent and dey > deqq),
then there ext constantsy, 8 andx suchthat

kLCV(v) =aLCV(p) + BLCV(q).

Rephkcev by
V= kv — as(degV)—degp)y _ ggdegv)—dega) g

Repeat the above process until the conditions are no longer satisfied.

Step 7. Make equal the constantsmultiplied to u andv in Steps Zand6. Setr = u + tv
and outpup, g andr.

Theorem 2. The algorithm MUBASIS orrectly computes the newly defingebasis of
the rational ruled surfacdP(s, t).

Proof. FromSteps 24, one has

4
xPo(s) = hoop + ho1G = ) _(tzihoo + tzihoMi = uM .
i=1
Similarly,
«P1(s) =vMT.
Thusu andv are the solutions of the system of equatiob®(thatis, r = u + tv satisfies
(10). Steps 3can be done sincBy(s) andP1(s) are moving planes followin®(s, t) and

thus can be expressedfs]-linear comlinations ofp andg.
To showr has the lowest degree #nwe note that all solutions of the equation

Mu' =0
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are generated by andg. Therdore the solution of the equation
MuT = Py(s)"

takes he formu = hyp + hoq + ug, whereh1, hy € R[s] andug is a particular solution of
the alove equatin. Hence Steps 5and6 reduce the degree ofand guarantee thathas
the lowest degreeia. [

We end ths setion with an example fromChenet al. (200] to denonstrate the
algorithmMU-BASIS
Let a rational ruled surfade(s, t) = Po(s) + tP1(s) be given by
Po(s) = (8° 425> —s+ 3, —35+ 3, —25> — 25+ 3,25’ + 5+ 2)
and
P1(s) = (25° + 25° — 35+ 7,25% — Bs + 5, —65% — 85+ 4, 55° + 45 + 5).
Using the ajjorithm inChenet al.(2001), p andq are found to be
p = (225 + 31, 155° + 395 + 33,1952 — 115 — 28, 85° — 11s — 54)
q = (625 — 154, 4s® — 39s — 259, —23s?> — 18% + 207, —54s> — 164s + 309).
Next weobtain theu-basisp andg of P(s, t) = p + tq
p=25261—25,25—1, —25—2,5+1)
0 = (7468% — 73s, 485> — 6505° — 11% + 288 —48s°
+4825% 4 8185 + 432 24s® — 1935% — 40% — 48)
and the transformation matrix
T ( 45454 421 2332+ 6875+ 421 23%% - 31% 1252 — 397s>
—140s— 48  —70s*—178 —70s% + 123 112
betweerM andp, §. Now expressP; (s), i = 0, 1, in (17), where
hoo = 24s® — 313 — 144, hor = —2526 h1o = 485> — 674s — 336,
hiy = —5052  « = —121248
and obtain
u = (60 624+ 156 495 — 131998 + 10 896°, 218 92% — 61 65%°
—60624— 564453 + 559%% —26533& + 240 99%° — 82 36%°
+57365%, —225744 — 13284° + 1225337 + 28&%)
v = 2(50520+ 13549% — 142 8947 + 10 8963, 192 335 — 83 73%2
—70728— 62033° + 559%% —25777& + 2428232 — 88103°
+5736% —216 216 — 13572° + 131 7732 + 28&%).

Reducing the degrees ofandv by Steps Zand6, we findly obtainr = u + tv, where
u=(882410s+ 871 37% — 1109 —62s — 966
v = (1818 742+ 1718 575 — 2389 —334s — 2352.
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4. Propertiesof the newly defined u-basis

In this section we will explog some poperties of theu-basis conisting of the three
polynomialsp, q andr. In paticular, we fiow that theu-basis serves as the basis for both
the moduleL st and the ideal corresponding to the rational ruled surRyset).

Theorem 3. The three elements, g andr = u + tv of the u-basis areR[s, t]-linearly
independent. In particulap, g, u are R[s]-linearly independent ang, g, v are R[s]-
linearly indgpendent. Furthermore, for a specific parameter pag; to),

1. p(so, o), q(0, to), r(so, to) are linearly dependent if and only (&, tg) is a base
point of P(s, t);
2. p(%0), q(sp) andu(sp) are linearly dependent if and only if $s a common zero of

ao(s), bo(s), co(s) and ay(s); _ .
3. p(%0), q(s0) andv(sy) are linearly dependent if and only if $s a comma zero of

ay(s), bi(s), ci(s) and di(s).

Proof. If p, q,r areR[s, t]-linearly dependent, then one can verify that the outer product
of p, q, r is the zero vector identically, which contradici®). Thereforep, g, r areR[s, t]-
linearly independent. Similarl\ip, g, u] = «Po(s) and[p, g, Vv] = «P1(s) implies that
p, g, u andp, g, v areR[s]-linearly independent.

For a sgcific parameter paiiso, to), p(So, to), q(So, to), r (S0, to) are linearly dependent
if and only if [p(sp, to), q(0, to), r (S0, to)] = O, or if andonly if P(sg, tp) = 0 by (10), i.e.,
(0, to) is a baseoint of P(s, t). Similarly, p(so), q(Sp) andu(sp) are linearly dependent if
and only if Po(sg) = 0; furthermorep(sy), q(so) andv(sp) are linearly dependent if and
only if P1(s9) = 0. O

Theorem 4. p, g andr form a basis for the modulés; that is, for anyl(s,t) € Lsp,
there exist potnomials h(s, t), i =1, 2, 3, sud that

I(s, t) = hip + h2g + har (18)

and the above expression is unique (thys is a free nodule). Furthermoregeg (h1p) <
deg (1), deg(h2q) < deg(l), deg(hsr) < deg(l); anddeg,(h1p) < deg(l), deg(h2q) <
deg(l), deghar) < deg(l) if LCV(p), LCV(q) and LC\(r) are R[t]-linearly
independent, elsdeg,(hip), deg,(h2q) and deg,(har) are bounded bydeg,(l) + m +
deg,(r) — n.

Remark 1. Note the following facts.

1. Itiseasyto see thatCV (p), LCV(q) andLC Vs(r) areR[t]-linearly independent, if
one of the following holds: (i) de@) > degv) andLCV(p), LCV(q) andLCV(u)
are linearly independent; (ii) dég > degu) andLCV(p), LCV(q) andLCV (v)
are linearly independent; (iii) d¢ég) = degv) and LCV(p), LCV(q), LCV(u)
are linearly independent; (iv) dag) = degv) andLCV(p), LCV(q), LCV(v) are

linearly indgpendent.
2. Since one always has d¢g < degq) = m — u, whenLCV(p), LCV(q)

and LCVs(r) areR[t]-linearly dependent, dethip), deg,(h2q) and deg(har) are
generally bounded by dgd) + m+ (m—pu —1) —n=deg()+2m—-n—pn -1
in this case.
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Before proving the theorem, we need several lemmas.

Lemma 1. Let g(s) be the polynomial defined Propositionl. Then gs) € (a, b, ¢, d) C
R[s, t].

Proof. Sinceg(s) = GCD([a, b], [a,c], [a,d], [b, c], [b, d], [c, d]), there eist poly-
nomids hij(s) e R[s],i =1,..., 6, such that

g = hy[a, b] + ho[a, c] + hg[a, d] + ha[b, c] + hs[b, d] + he[c, d].

Obviously, [a, b] = bia — aib € (a, b, ¢, d). Similarly, [a, c], [a, d], [b, c], [b, d] and
[c, d] all belong to(a, b, ¢, d). Herce,g € (a, b, c,d). O

Lemma 2. For any moving plane A% By + cz+ D € Lst, there existpolynomials
hi(s,t) e R[s,t],i =1,...,6,sud that

g* (AX+ By+Cz+ D) = hy(dx —a) + ha(dy — b) + hz(dz—c)
+ ha(bx — ay) + hs(cy — bz) + hg(cx — az).
Here g(s) is asdefined inPropositionl.

Proof. By Lemma 1 there exist polynomialgj(s) € R[s] suchthatg = kija + kob +
ksc + kqd. Herce

g* (AX+ By+ Cz+ D) = (kja + kob + kzc + kqd)(Ax + By + Cz+ D).
SinceAx + By + Cz+ D = 0 follows P(s, t), one has
Aa+ Bb+Cc+ Dd =0.
Thus
a(Ax+ By+Cz+ D) = (—-Bb—Cc— Dd)x + aBy+aCz+aD
= B(ay — bx) + C(az—cx) + D(a — dx).

Similarly, one can show that(Ax + By + Cz + D), c(Ax + By + Cz + D) and
d(Ax + By + Cz+ D) are allR[s, t]-linear comlinations ofdx — a, dy — b, dz — c,
bx —ay, cy — bzandcx — az herce, soisg* (Ax+ By+Cz+ D). O

Lemma3. dx —a,dy—b,dz—c, bx— ay, cy— bzand cx— az are allR[s, t]-linear
combinations of pq, r, where p g, r are theu-basis.

Proof. By (10), one can directly verify that

k(dx —a) = (g3r2 — g2r3) p+ (r3p2 — r2p3)q + (Psdz2 — P203)r

wherek is anonzero constant, sdx — a is anR[s, t]-linear comlination of p, q,r.
Similarly,dy— b, dz—c,bx—ay, cy — bzandcx — azare allR[s, t]-linear comlinations
of p,q,r. O

Lemma4. Any moving plane Ax By+ Cz+ D € Lg¢ is anRR[s, t]-linear combination
of p,q,r.
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Proof. FromLemmas 2and3, there exist polynomialsj € R[s, t],i = 1, 2, 3, such that
g% (Ax+ By+ Cz+ D) = hyp + hoq + har

or equivalently
g(A, B,C, D) = hip + hoq + har.

In the fdlowing, we want to showg | i, i = 1, 2, 3.
Forming the outer product on both sides of the above equationgyithwe get

gl(A, B,C,D),q,r] =hilp,q,r] = khi(a, b, c, d).

SinceGCD(a, b, c,d) = 1, g | hy. Similarly, g | hp andg | hs. Thus we conclude that
AX+ By+ Cz+ D = hyp+ haogq + har

forsomeh; e R[s,t],i =1,2,3. O

Now we are ready to provEheorem 4

By Lemma 4 p, g andr are a generating set of the modulg;. On theother hand, since
p, g andr are linearly independent bpheorem 3 the expression {8) is unique. That is,
p, q andr form a basis of s ;. The firstpart of the theorem is proved.

For the next part, we first prove the bounds on the degrebs of= 1, 2, 3, with respect
tot. Assume that the mémumdegree ohip, hoq andhzr in t isl. Write

[ -1
hi :Zhij (ot i=12, hszzhsj(s)tj-
j=0 j=0
If deg (I) < I, then he leading term irt on the right-hand side of equatiof8) must
vanish, hat is,

hyp+hagq+hzj_1v=0

which impliesp, g, v areRR[s]-linearly dependent, a contradiction wittheorem 3 Thus
we must hae deg(l) > I.

Next we prove the bounds on the degreesgfi = 1, 2, 3, with respect tcs. From
(18), we have[p, q,I] = hz[p,q,r] = «hsP(s, t), so deg(hs) < deg(l) + m — n,
wherem is the implicit degree of the rational ruled surfdees, t). Herce, deg(hsr) <
deg,(l) + m+ deg,(r) — n.

If LCV(p), LCV(q) andLCVs(r) areR[t]-linearly independent, then frofp, g, r] =
«P(s, t), one has de@) + degq) + deg(r) = deg(P), so deg(r) = n — m. Herce
deg(hsr) < deg(l) in this case. The bounds on the degreeshgb and hoq follow
similarly. O

Next we dscuss e relationship of the.-basisp, g, r and the ideal corresponding to
P(s, t).

Theorem 5. Let f(X, Yy, z) = 0be the implicit equation of rational ruled surfa¢¥s, t).
Then f(x,y,2) € (p,q,r).

Proof. By Proposition4f (x,y,2) € (p,q) C (p,q.r). O
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Theorem 6. Let
| :=(dx—a,dy—b,dz—c) C R[X,Y,1Zs,t] (29)

be the ideal corresponding to rational ruled surfag® and g(s) be the polynomial as
defined inPropositionl. Then

g(p.q.r) C | C(p.q.r). (20)

In particular, if a rational ruled surfaceP(s, t) does not have s-finite base points, then
I =(p,q.r).

Proof. By Lemma3dx —a,dy—b,dz—c e (p,q,r). Hercel c (p,q,r). Next we
showg(p,q,r) C |. Let

0 [c,d] [d,b] [b,c]
[d,c] 0 [a,d] [c, a]
[b,d] [d,a] 0 [a, b]
[c,b] [a,c] [b,a] 0
By Proposition 2to provegp, gqg € |, we only have to prove that, for each romof the
matix M, v-X € I. Since[c, d]y + [d, b]z+ [b, ¢] = (d1z— ¢1)(dy—b) — (d1y — by) x
(dz—c) € I, for the first rowv of matrix M, v-X € I. Similarly, one can show that, for
the other three rows dfl, v - X e | also holds. Thugp, gq € .

Next we want to provegr € |. By Lemma 2 there exist polynomialk;[s, t] € R[s, t],

i=1...,6,suchthat

,\7':

gr = hi(bx — ay) + ha(cx — az) + hz(dx — a) + ha(cy — bz) + hs(dy — b)
+he(dz—c)
= (h1y + hoz + h3z)(dx — @) + (—h1x + hsz + hs)(dy — b)
+ (—h2x —hgy + he)(dz—c) € I.
The second part of the theorem is proved.

By Proposition 1whenP(s, t) does not have-finite base pointsg(s) = 1 andhence
Il =(p,q,r). O

Remark 2. When the rationlaruled surface P(s, t) has base points, in generhl #
g(p,q,r) andl # (p,q,r). However, ifGCD(ay, b1, ¢1,d;) = 1, then one can show
that

g(p.q) = 1 NR[X, . Z5s]. (21)

FromTheorem @nd the abovRemark 2we see tht theu-basisp, g, r generally does
not serve as a basis of the idéahnd that the implicit equation ¢#(s, t) does not belong
to the ideall . However, in he following wewill show thatp, g, r serve as a basis for the
ideal

I":=(dx—a,dy—b,dz—c,dw — 1) NR[X, Yy, z, S, t] (22)

which is the “proper” ideal corresponding to the rational ruled surfa¢et).
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Lemmab. Let I’ be the ideal defined i22), and g(s) be the polynomial defined in
Propositionl. Then [ is a prime ideal, and ¢g) ¢ 1.

Proof. Itis enough to prove that the ideal
I”:=(dx—a,dy—b,dz—c,dw — 1) C R[X, Y, z, w, S, t]

is prime.

Consider the righomomorphisme : R[X, Y, z, w, S, t] — R[w, S, t] thatsendsx, vy,
zZ, w, S, ttoaw, bw, cw, w, s, t respectively. Sincd € R[s, t], one easily sees thdiv — 1
is irreducible inR[w, s, t]. Thus(dw—1) is a prime ideal, which means that 1 ((dw—1))
is also prime. N& we show that” = ¢~1((dw — 1)), which implies |7 is prime.

It is easy to see thaf € ¢ 1((dw — 1)) if and only if f(aw, bw,cw,w,s,t) =
h(w,s,t) x (dw — 1) for some polynomiah. Sincedx — alx—awy = a(dw — 1),
dx—a e ¢~ 1((dw — 1)). Similarly, dy — b, dz— ¢, dw — 1 all bdong tog~1((dw — 1)).
Hencel” ¢ ¢~1((dw — 1)). Conversely, supposé € ¢—1((dw — 1)). By thebinomial
theorempone has

fx,y,z,w,s,t) = f(x—aw+aw,y —bw+ bw,z— cw + cw, w, s, t)
= element ofix — aw, y — bw, z— cw)
+ f (aw, bw, cw, w, s, t).
Notice thatx —aw = w(dx—a) —x(dw—1), sox—aw < |”. Similarly, y—bw, z—cw €

|”.Herce f € |”. Therdore,|” = ¢—1((dw — 1)) is prime. Furthermore, it is easy to see
thatg ¢ ¢ 1((dw — 1)) NR[X, y, z, S, t] = |I’. This jmmpletes the proof. [

The ideall’ is closely related with the moving surfacesRig, t).

Theorem 7. Let F(X, Y, z, s, t) be a moving surface as defined@). Then Rx, y, z, s, t)
followsP(s, t) if and only if Fe I,

Proof. For sufficiency, supposeF(x,y,zs,t) € |/, then there exist polynomials
A, B,C, D € R[X, Y, z, w, S, t] suchthat

F = A(dx—a) + B(dy—b)+ C(dz—c) + D(dw — 1).
Settingx = a/d,y = b/d, z= c/d andw = 1/d in the above equation immediately gives
F(a/d, b/d, c/d,s, t) =0.

HenceF (x, Y, z, s, t) is a moving surface following(s, t).

For necessity, letF(x, y, z, s,t) be a moving surface following(s, t). Divide F by
dx—a,dy—b,dz—canddw — 1 (usingx, y, zandw as the main variables) respectively,
then there exist polynomials € R[X, Y,z w,s,t],i = 1, 2,3, 4 andhs € R[s, t] such
that

d“F = hy(dx — a) + ha(dy — b) + h3(dz— ) + hg(dw — 1) + hs,

wherek is a nonnegative integer. Substituting= a/d, y = b/d, z = ¢/d andw = 1/d
into the above guation, one geths = 0. Thusd“F € I’. By Lemma5 |’ is prime and
d¢1’/,soF € |’. The theoremd thus proved. O
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Lemma6. Let m = p(X,¥,2,%), o = q(X,Y,2z,S) andrp = r(X, VY, z, S, t). Then
V3 - (07 rO, _QO)
Proof. Let

B— (Dl(So) P2(S0)  P3(So) p4(So))
qi(So) O2(0) G3(S) Ga(so) /-

By Proposition 3the rank of the matrixB is 2. Weprove the lemma for the following two
cases.

Case l. The first three columns of the matrB have rank 1. In this case, there exist
constantsy, 8 (at least one of them is nonzero) such that

a(P1(S0), P2(S0), P3(S0)) + B(d1(S0), G2(S0), d3(sp)) = 0.

Thenapo + Bdo = ap4(So) + Bda(Sp) is anonzero constant since raiiy = 2. Thus
{po, do) = R[X, Y, z,t], which inturn implies that(po, o, ro) = R[X, Y, z, t]. Now the
argumentof Lemma 1 d@ox et al.(1998H (see also kercise 15 a page285 ofCox et al,
19984 implies thatsya po, qo, ro) is generated by, vo andvs.

Case 2. The first three columns of the matifkhave rank 2. We will sbw in this case that
Po, do, ro form a regular sequence, that &, do, ro have the following properties:

— po is not a zero divisor ifR[X, Y, z, t].
— Qo is not a zero divisor iflR[X, Y, z, t]/{Po).
— rois not a zero divisor ilR[X, Vy, z, t]/{Po, do)-

Then a standard result in commutative algebra guarantees that the syzygiese:To
have the ddased form.

Since he first three columns of the matikhave rank 2, we can make an affine change
of coordinates so thgip = x andqo = y. Then

ro = (U1(S0) + v1(SH)t)X + (U2(So) + v2(So))Y + (U3(Sp) + v3(S)1)Z + Ua(S)
+ va(so)t.

It is obvious thatpg = x is not a zero divisor ifR[X, Yy, z,t] and thatggp = y is not a
zero divisor inR[X, vy, z, t]/{po) = R[Y, z, t]. Furthermoe, sinceR[x, vy, z, t]/{po, qo) =
R[z, t], it follows thatrg gives a honzero divisor iR[X, Y, z, t]/{po, do) if andonly if

(U3(S0) + v3(S0)t)Z + Ua(So) + va(So)t # O inRR[z, t] (%).

If p(s0) = (1,0,0,0), q(sp) = (0,1,0,0) and u(sg) are linearly independent, then
u3(Sp) # 0 orug(sp) # 0; otherwisep(s), (o), V(So) must be linearly independent
by Theorem 3sov3(Sp) # 0 orva(so) # 0. In either case, equatiar) holds. Thugg is
not a zero divisor ifR[X, Y, z, t]/{po, o). Therdore po, qo, ro form a regular sequence.
This completes the proof of the lemmall

Lemma7. Supposehf (p,q,r) Cc R[X, Y, z s, t], where he R[s]. Then fe (p,q,r).
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Proof. We will first show that if (s — s9)f € (p,q,r), thenf e (p,q,r). Without
loss of generality, we assungg = 0. Sincesf € (p,q,r), there exist polynomials
hi e R[X,Y,2zs,t],i =1, 2,3suchbhat

sf =hyp+ hoq + har.

Write hj = ZTi:o hijsl,i = 1,2, 3, wherehjj € R[X, Y, z, t]. Sinces|hy p + hzq + har,
one gets

h1opo + h200o + h3oro = 0

wherepg = p(X, Y,z 0), 00 = q(X, Yy, z,0) andrg = r(x, vy, z,0,t). By Lemma 6 there
exist polynomialsH; € R[x, Y, z,t],i = 1, 2, 3 such hat

h1o0 = Higo — Haro, h2o = Harg — Hipo, h3o = H2po — Hzqo
S0

h1op + h20g + h3or = Hi(dop — pod) + Ha(por —rop) + Ha(roq — dor).
Since

m—pu %
doP — Poq = (q— > qis') p- (p—Z pis'>q
i=1

i=1

w _ m-p
=s (qZ pst-p) CIiSIl)

i=1 i=1

Jop— posS € S(p, g, r). Similarly, por —rop, rog—dor € s(p, q,r). Herceh1op+hooq+
hzor € s(p, q,r). But

ny Ny nq
sf=s (thljSJl—i—qthjSJl—i—r Zhgjsll) + h1op + h2oq + h3or.
j=1 =1 =1

Thussf e s(p,q,r),i.e.,f € (p,q,r).
Now letsy be a zero ofi(s), andh’ = h/(s — 5). By the alove resulth’ f € (p, q,r).
The general result holds by mathematical induction on the degree dfl
Lemma8. Let f € I’ C R[X, Y, z s, t]. Then
gV fe(p.a.r)
for some positive integer N. Here g is the polynomial defindRrapositionl.

Proof. From f e |/, weknow that
f = A(dx—a)+ B(dy—b)+C(dz—c)+ D(dw — 1)

for some polynomialA, B,C, D € R[X, Y, z, w, S, t]. Sincew does not appear irf,
settingw = 1/d gives
f = AKXy, z1/d s t)dx—a) + By, z1/d,st)dy—b)
+C(x,y,2z 1/d,s,t)(dz—c).
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Multiplying both sides of the above equation B} for M sufficiently large shows that
dMf e I, wherel is the ideal defined inl@©). Next from
aMf = (dx— @dx—a)V f

and the binomial theorem, we obtaiff f € I, andbM f, cM f < | follow similarly. Now
settingN = 4M, one can easily show that

(ab,c,d)Nf .
ThengNf €| c (p,q,r) follows immediately sincg € (a, b, ¢, d) by Lemma1 O
Theorem 8. Let I’ be the ideal defined i(22). Then

I"=(p,q,r). (23)
Proof. FromTheorem §we haveg(p,q,r) C | c I’. Since byLemma 51’ is prime and
g¢ !l (p,gr)ycl”.

Conversely, supposé < |/, then byLemma8gNf € (p,q,r) for some positive
integerN, and sof € (p,q,r) by Lemma 7 Hercel’ c (p,q,r). The theoem is thus
confirmed. O

Remark 3. Theorem 5s a corollary ofTheorems &and8.

Remark 4. In Cox (2001), Cox introduces the notion of strong u-basisfor a general
rational surface. The strong-basis is defined as a basis of the syzygy module of the
rational surface. At this point, the-basis defined in this paper for a rational ruled surface
resembles the strong-basis. However, the strongbasis is defined for triangular surfaces
in projective space, and, in general, the stronbasis does not exist. In contrast, the
basis defined in this paper for a rational ruled surface always exists.

5. Conclusion

By introducing a polynomiat (x, vy, z, s, t) that is linear inx,y,z andt, we have
redefined thqs-basis of a rational ruled surface to be three polynompalg andr such
that the implicit equation of the surface is given by the resultarg ahdq with respect
to s and the parametric equation of the surface can be recovereddrgrandr. We also
presented an efficientgorithm for computingp, g andr, anddiscussed some properties
of the nevly definedu-basis. In particular, we show that the ngwbasis serves a basis for
both the moving plane module and the moving plane ideal corresponding to the rational
ruled surface. These results are helpful for understanding the constructionofasis
for a general rational surface—agblem worthy offurther study.
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